1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use crate::{
array::Constraint,
array_type,
validate::{Validate, Validator},
Array, Vector3,
};
/// Defines a 2D grid spacing and size.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(tag = "type")]
pub enum Grid2 {
/// Regularly spaced cells.
///
/// ![Diagram of a 2D regular grid](../images/grid2_regular.svg "A 2D regular grid")
Regular {
/// The cell size in the U and V axes. Both must be greater than zero.
size: [f64; 2],
/// The number of cells in the U and V axes. Both must be greater than zero.
count: [u32; 2],
},
/// Tensor cells, where each row and column can have a different size.
///
/// ![Diagram of a 3D tensor grid](../images/grid2_tensor.svg "A 2D tensor grid")
Tensor {
/// Array with `Scalar` type storing the size of each cell along the U axis.
/// These sizes must be greater than zero.
u: Array<array_type::Scalar>,
/// Array with `Scalar` type storing the size of each cell along the V axis.
/// These sizes must be greater than zero.
v: Array<array_type::Scalar>,
},
}
impl Grid2 {
/// Create a 2D regular grid from the cell size and count.
pub fn from_size_and_count(size: [f64; 2], count: [u32; 2]) -> Self {
Self::Regular { size, count }
}
/// Create a 2D tensor grid from the size arrays.
pub fn from_arrays(u: Array<array_type::Scalar>, v: Array<array_type::Scalar>) -> Self {
Self::Tensor { u, v }
}
/// Returns the number of cells in each axis.
pub fn count(&self) -> [u32; 2] {
match self {
Self::Regular { count, .. } => *count,
Self::Tensor { u, v } => [u.item_count() as u32, v.item_count() as u32],
}
}
/// Returns the total number of cells.
pub fn flat_count(&self) -> u64 {
self.count().into_iter().map(u64::from).product()
}
/// Returns the total number of cell corners.
pub fn flat_corner_count(&self) -> u64 {
self.count().into_iter().map(|n| u64::from(n) + 1).product()
}
}
impl Default for Grid2 {
/// Creates a regular grid with size `[1.0, 1.0]` and count `[1, 1]`.
fn default() -> Self {
Self::Regular {
size: [1.0, 1.0],
count: [1, 1],
}
}
}
/// Defines a 3D grid spacing and size.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(tag = "type")]
#[allow(clippy::large_enum_variant)]
pub enum Grid3 {
/// Regularly spaced cells.
///
/// ![Diagram of a 3D regular grid](../images/grid3_regular.svg "A 3D regular grid")
Regular {
/// The block size in the U and V axes. All must be greater than zero.
size: Vector3,
/// The number of cells in the U, V, and W axes. All must be greater than zero.
count: [u32; 3],
},
/// Tensor cells, where each row, column, and layer can have a different size. All sizes
/// must be greater than zero.
///
/// ![Diagram of a 3D tensor grid](../images/grid3_tensor.svg "A 3D tensor grid")
Tensor {
/// Array with `Scalar` type storing the size of each cell along the U axis.
/// These sizes must be greater than zero.
u: Array<array_type::Scalar>,
/// Array with `Scalar` type storing the size of each cell along the V axis.
/// These sizes must be greater than zero.
v: Array<array_type::Scalar>,
/// Array with `Scalar` type storing the size of each cell along the W axis.
/// These sizes must be greater than zero.
w: Array<array_type::Scalar>,
},
}
impl Grid3 {
/// Create a 3D regular grid from the block size and count.
pub fn from_size_and_count(size: Vector3, count: [u32; 3]) -> Self {
Self::Regular { size, count }
}
/// Create a 3D tensor grid from the size arrays.
pub fn from_arrays(
u: Array<array_type::Scalar>,
v: Array<array_type::Scalar>,
w: Array<array_type::Scalar>,
) -> Self {
Self::Tensor { u, v, w }
}
/// Returns the number of blocks in each axis.
pub fn count(&self) -> [u32; 3] {
match self {
Self::Regular { count, .. } => *count,
// validation checks that this cast is valid
Self::Tensor { u, v, w } => [
u.item_count() as u32,
v.item_count() as u32,
w.item_count() as u32,
],
}
}
/// Returns the total number of blocks.
pub fn flat_count(&self) -> u64 {
self.count().iter().map(|n| u64::from(*n)).product()
}
/// Returns the total number of block corners.
pub fn flat_corner_count(&self) -> u64 {
self.count().iter().map(|n| u64::from(*n) + 1).product()
}
}
impl Default for Grid3 {
fn default() -> Self {
Self::Regular {
size: [1.0, 1.0, 1.0],
count: [1, 1, 1],
}
}
}
const fn i() -> Vector3 {
[1.0, 0.0, 0.0]
}
const fn j() -> Vector3 {
[0.0, 1.0, 0.0]
}
const fn k() -> Vector3 {
[0.0, 0.0, 1.0]
}
/// Defines the position and orientation of a 2D plane in 3D space.
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize, JsonSchema)]
#[repr(C)]
pub struct Orient2 {
/// Origin point relative to the project origin and coordinate reference.
pub origin: Vector3,
/// The direction of the U axis of the plane. Must be a unit vector. Default [1, 0, 0].
///
/// Must also be perpendicular to the 'v' in grid surfaces.
#[serde(default = "i")]
pub u: Vector3,
/// The direction of the V axis of the plane. Must be a unit vector. Default [0, 1, 0].
///
/// Must also be perpendicular to the 'u' in grid surfaces.
#[serde(default = "j")]
pub v: Vector3,
}
impl Orient2 {
/// Creates a new 2D orientation.
pub fn new(origin: Vector3, u: Vector3, v: Vector3) -> Self {
Self { origin, u, v }
}
/// Creates a new axis-aligned 2D orientation.
pub fn from_origin(origin: Vector3) -> Self {
Self::new(origin, i(), j())
}
pub(crate) fn validate_ortho(&self, val: &mut Validator) {
val.enter("Orient2").vectors_ortho2(self.u, self.v);
}
}
impl Default for Orient2 {
/// Creates a new axis-aligned 2D orientation at the origin.
fn default() -> Self {
Self {
origin: [0.0; 3],
u: i(),
v: j(),
}
}
}
/// Defines the position and orientation of a 3D sub-space.
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize, JsonSchema)]
#[repr(C)]
pub struct Orient3 {
/// Origin point relative to the project origin and coordinate reference.
pub origin: Vector3,
/// The direction of the U axis of the grid. Must be a unit vector perpendicular to
/// `v` and 'w'. Default [1, 0, 0].
#[serde(default = "i")]
pub u: Vector3,
/// The direction of the V axis of the grid. Must be a unit vector perpendicular to
/// `u` and 'w'. Default [0, 1, 0].
#[serde(default = "j")]
pub v: Vector3,
/// The direction of the W axis of the grid. Must be a unit vector perpendicular to
/// `u` and 'v'. Default [0, 0, 1].
#[serde(default = "k")]
pub w: Vector3,
}
impl Orient3 {
/// Creates a new 3D orientation.
pub fn new(origin: Vector3, u: Vector3, v: Vector3, w: Vector3) -> Self {
Self { origin, u, v, w }
}
/// Creates a new axis-aligned 3D orientation.
pub fn from_origin(origin: Vector3) -> Self {
Self::new(origin, i(), j(), k())
}
}
impl Default for Orient3 {
fn default() -> Self {
Self {
origin: [0.0; 3],
u: i(),
v: j(),
w: k(),
}
}
}
impl Validate for Grid2 {
fn validate_inner(&mut self, val: &mut Validator) {
match self {
Grid2::Regular { size, count } => {
val.enter("Grid2::Regular")
.finite_seq(*size, "size")
.above_zero_seq(*size, "size")
.above_zero_seq(*count, "count");
}
Grid2::Tensor { u, v } => {
val.enter("Grid2::Tensor")
.grid_count(&[u.item_count(), v.item_count()])
.array(u, Constraint::Size, "u")
.array(v, Constraint::Size, "v");
}
}
}
}
impl Validate for Grid3 {
fn validate_inner(&mut self, val: &mut Validator) {
match self {
Grid3::Regular { size, count } => {
val.enter("Grid3::Regular")
.finite_seq(*size, "size")
.above_zero_seq(*size, "size")
.above_zero_seq(*count, "count");
}
Grid3::Tensor { u, v, w } => {
val.enter("Grid3::Tensor")
.grid_count(&[u.item_count(), v.item_count(), w.item_count()])
.array(u, Constraint::Size, "u")
.array(v, Constraint::Size, "v")
.array(w, Constraint::Size, "w");
}
}
}
}
impl Validate for Orient2 {
fn validate_inner(&mut self, val: &mut Validator) {
val.enter("Orient2")
.finite_seq(self.origin, "origin")
.unit_vector(self.u, "u")
.unit_vector(self.v, "v");
}
}
impl Validate for Orient3 {
fn validate_inner(&mut self, val: &mut Validator) {
val.enter("Orient3")
.finite_seq(self.origin, "origin")
.unit_vector(self.u, "u")
.unit_vector(self.v, "v")
.unit_vector(self.w, "w")
.vectors_ortho3(self.u, self.v, self.w);
}
}